В аэрокосмической промышленности, а также в морском транспорте и автомобилестроении широко применяются полимерные композиционные материалы (ПКМ), превосходящие по удельной прочности и жёсткости высокопрочные стали. Для активного внедрения любого материала важно знать, под каким давлением он разрушится. Для слоистых композитов, таких как углепластик, основная проблема – это растрескивание полимерного основания при ударе, что ведёт к расслоению материала и разрушению волокон.
Именно углеродное волокно придаёт материалу жёсткость и прочность. Из них сплетают ткани, которые укладываются разнонаправленными слоями и пропитываются эпоксидными смолами, создавая многослойную структуру. ПКМ на 30-50% легче традиционных металлов, что делает их идеальным для использования в аэро-космической технике и многих других видах транспорта.
В июне на встрече со студентами КНИТУ-КАИ управляющий директор АО «Туполев» Константин Тимофеев
Лазерно-ультразвуковая структуроскопия будет следить за качеством композитных деталей
Однако Константин Тимофеев был не до конца откровенен в своём ответе, т.к. методы неразрушающего контроля композитных конструкций существуют и продолжают совершенствоваться. К примеру, на сайте «Авиация России» можно найти подборку статей на эту тему по тегу «неразрушающий_контроль». А основной причиной использования алюминиевых сплавов в производстве крыла самолётов A320/321 и семейства Boeing 737 является не отсутствие технологий контроля целостности ПКМ, а высокая стоимость разработки нового композитного крыла. В 2021 году примерные затраты на создание такого крыла Airbus
В Новосибирске прошла конференция по проблемам прочности авиационных конструкций и материалов
В России изучение прочности и целостности композитных изделий средствами неразрушающего контроля ведутся ведущими научными центрами, в том числе Пермским Политехом (ПНИПУ), где методом акустической эмиссии были проведены исследования углепластика на предмет определения нагрузок, приводящих к его разрушению. Эти исследования помогут прогнозировать сценарии повреждения конструкций, повышая их надёжность и безопасность эксплуатации воздушного транспорта. Результаты работы опубликованы в
Для полимерных композитов критическим видом разрушения является межслойный сдвиг, который может произойти под сильным напряжением, например, в основании лопатки авиационного двигателя. Чтобы изучить предел этой деформации, учёные ПНИПУ исследовали ПКМ современными методами экспериментальной механики. Они контролировали межслойный сдвиг углепластика предварительными ударными воздействиями: сначала исследовали образцы на удар, а затем на межслоевой сдвиг.
В России разработана система непрерывного мониторинга состояния композитного крыла
«Совмещение моделирования испытаний на прочность и таких методов, как акустическая эмиссия и корреляция цифровых изображений позволяет достаточно точно регистрировать и устанавливать вид повреждений, вызываемых сдвиговыми деформациями. Первый – регистрирует сигналы акустических волн, испускаемых объектом, благодаря чему качественно оценивается состояние повреждения композитов. А второй метод позволяет обнаружить локализацию и развитие различных дефектов структур в процессе нагружения, регистрируя поля перемещений и деформаций», – приводит комментарий аспиранта кафедры экспериментальной механики и конструкционного материаловедения ПНИПУ Екатерины Чеботарёвой пресс-служба университета.
Эксперименты проводились с образцами углепластика в виде коротких балок, которые подвергали ударам с энергией 1, 3, 5 и 6 Дж. В процессе испытаний фиксировались сигналы акустической эмиссии и поля деформаций. Результаты показали, что удары с энергией 1 и 3 Дж не оказывают значительного влияния на материал, в то время как при ударах 5 и 6 Дж материал начинает разрушаться уже на начальных этапах экспериментов.
Дефекты композитных деталей двигателей семейства «ПД» выявит ультразвук
Методы акустической эмиссии и корреляции цифровых изображений помогли точно установить вид повреждений и их локализацию. Удары энергией 5 и 6 Дж приводили к значительно более высоким пиковым амплитудам акустических сигналов и более частым повреждениям материала. Анализ акустических частот показал, что растрескивание матрицы соответствует низким частотам, расслоение материала – средним, а разрушение волокон – высоким.
Исследования учёных ПНИПУ позволили выяснить, что предварительные ударные воздействия с энергией удара 1 и 3 Дж не оказывают существенного влияния на разрушения образцов из ПКМ. Тогда как для 5-6 Дж повреждения фиксируются с самого начала испытаний, появляются сильные расслоения и растрескивается основа материала. Проведённые испытания позволят точнее предсказать поведения конструкций из углепластика, повысить их надёжность и долговечность.