Почему у МС-21 нет винглетов

Эскизный проект МС-21 в середине 2000-х годов / Фото © ОКБ им. Яковлева

Аэродинамические законцовки консолей крыла - винглеты (англ. winglets) - "крылышки", присутствуют у подавляющего большинства современных лайнеров. Этот аэродинамический элемент придаёт самолёту изящность, стремительность, однако их использование - это не дань моде, а способ уменьшить индуктивное сопротивление крыла, повысить топливную эффективность и увеличить дальность полёта лайнера.

Полное аэродинамическое сопротивление крыла самолёта, летящего на околозвуковой скорости, складывается из волнового, профильного, индуктивного и паразитного сопротивлений. Аэродинамическое качество крыла тем лучше, чем меньшую силу лобового и индуктивного сопротивлений оно создаст.

При обтекании крыла воздушным потоком возникает разность давлений над крылом и под ним. В середине крыла воздух течёт от передней кромки к задней, ближе к законцовкам картина обтекания меняется - часть воздуха, срываясь с концов крыла, перетекает из зоны повышенного давления в зону пониженного - от нижней поверхности крыла на верхнюю и накладывается на воздушный поток, набегающий на верхнюю часть крыла.

Такое движение воздушных масс сообщает воздушному потоку паразитную силу, направленную вниз перпендикулярно вектору скорости, что приводит к уменьшению на конце крыла подъёмной силы.

В результате, за концами крыла образуются два вихревых жгута, которые называют спутными струями. Энергия, затрачиваемая на образование этих вихрей, и определяет индуктивное сопротивление крыла.

Влияние винглетов на уменьшение индуктивного сопротивления
Влияние винглетов на уменьшение индуктивного сопротивления

Индуктивное сопротивление отсутствует у бесконечно длинного крыла, но реальный самолёт такое крыло иметь не может. Для оценки аэродинамического совершенства крыла существует понятие «аэродинамическое качество», - чем оно выше, тем совершеннее самолёт. Улучшить аэродинамическое качество крыла можно, увеличивая его эффективное удлинение - отношение размаха крыла к его средней аэродинамической хорде. Чем этот параметр больше, тем меньше его индуктивное сопротивление, меньше расход топлива, больше дальность полёта.

Сила вихрей зависит от размеров, формы крыла, разницы давлений над верхней и под нижней поверхностями. За тяжёлыми самолётами образуются очень мощные вихревые жгуты, которые сохраняют свою интенсивность на дистанции 10-15 км. Они могут представлять опасность для летящего сзади самолёта, особенно когда в вихрь попадает одна консоль. Эти вихри можно легко увидеть, если понаблюдать за приземлением реактивных самолётов. Из-за большой скорости касания посадочной полосы колесная резина горит. В момент приземления за самолётом образуется шлейф пыли и дыма, который мгновенно закручивается в вихрях.

Спутные вихри, создаваемые срывающимся с конца крыла воздушным потоком
Вихри, создаваемые срывающимся с конца крыла воздушным потоком

Для преодоления индуктивного сопротивления требуется дополнительная кинетическая энергия двигателя, что увеличивает расход топлива. Уменьшить индуктивное сопротивление и повысить аэродинамическое качество - основной параметр, характеризующий совершенство самолёта, легче всего за счёт увеличения размаха крыла.

Взгляните на крыло самолёта-рекордсмена 30-х годов ХХ века АНТ-25 - длина самолёта составляет 13 метров, а размах крыла - 34, при этом его удлинение равнялось 13,1, что превращало самолёт в огромный планер с мотором. В то время авиационная наука не предполагала конструкцию крыла с изменённой геометрией концевой части, поэтому для дальних беспосадочных перелётов строились машины с таким "размашистым" крылом.

ant25
Размах крыла самолёта АНТ-25 составляет 34 метра!

Современные условия накладывают свои ограничения на размах крыла, которые определяются конструктивными и эксплуатационными параметрами. Так, например, аэродромная инфраструктура и требования ICAO ограничивают до 36 метров размах крыла у среднемагистрального самолёта. Винглеты позволяют увеличить эффективное удлинение крыла при практически неизменном размахе.

Одним из первых исследователей влияния формы законцовок крыла на аэродинамику самолёта был Ричард Уиткомб - авиационный специалист и инженер НАСА. В начале 70-х годов он сконструировал законцовку, перпендикулярно расположенную вверх и вниз от плоскости крыла, сегодня похожую конструкцию можно увидеть у Airbus A320. Внешне винглеты сильно различаются на разных самолётах, но все они предназначены только для одного - повышение экономической эффективности лайнера.

B787 Falcon50 B737-800 A320 B747 A350X

Удлинение крыла / Aspect ratio
Модель самолёта Значение
Ту-154М 7,83
Як-42Д 7,6
Як-42М 10,5
Ил-62М 6,4
Ил-114 11
SSJ 100 10
Airbus A350 9,49
Airbus A320 9,5
Airbus A320CEO 9,48
Airbus A321CEO 9,23
Airbus A320NEO 10,45
Airbus A321NEO 10,17
Airbus A330CEO 10,06
Boeing 737 8,3
Boeing 737-300 -400 -500 9,16
Boeing 737-600 -700 -800 -900ER 9,45
Boeing 757 7,8
Boeing 777-200 -300 8,68
Boeing 777-200LR -300ER 9,04
Boeing 747 7
Boeing 747-400ER 7,9
Boeing 747-8 8,5
Boeing 787 Dreamliner 10,03
Bombardier Dash 8 Q200 13,8
Bombardier Dash 8 Q300 13,36
Bombardier Dash 8 Q400 12,6

Установка винглетов даёт дополнительно до 7% экономии топлива. Авиаконструкторы всегда стремились увеличить типовое удлинение крыла - отношение длины к средней хорде. Типовое удлинение крыла у самолётов прошлых поколений составляло 8–9, у современных — 10–10,5, а на МС-21 - 11,5. Чтобы изготовить крыло из алюминия с большим удлинением, для сохранения его жёсткости потребовалось бы существенно увеличить толщину крыла, т.к. алюминий — металл мягкий, а увеличение толщины крыла - это увеличение лобового сопротивления.

Углепластик — гораздо более жёсткий материал, поэтому, даже без использования винглетов, композитное крыло МС-21 большого удлинения, образованное тонкими суперкритическими профилями (практически плоская верхняя и выпуклая нижняя поверхности), позволяет на крейсерских скоростях полёта получить аэродинамическое качество на 5-6% лучше, чем у новейших зарубежных аналогов.

В представленной таблице собраны значения удлинения крыла у современных российских и зарубежных самолётов. Макcимальное значение - у канадского турбовинтового самолёта Bombardier Q200 - 13,8. Прямые конкуренты МС-21 - даже новейшие модели А320/321 и В737-800 - имеют значительно худшие показатели. Приблизиться к совершенству крыла МС-21 может обновлённая версия A330CEO, у него удлинение крыла составит 11,07, при этом площадь крыла увеличится с 361,6 м² до 370 м². Но это широкофюзеляжный самолёт, в то время как МС-21 - узкофюзеляжный.

Для исследования влияния винглетов на динамику полёта МС-21 в ЦАГИ были спроектированы и испытаны в аэродинамических трубах крылья с аэродинамическими законцовками. Установка винглетов требует значительного усиления конструкции крыла и увеличения его массы. При боковых порывах ветра винглеты создают серьёзную сгибающую и крутящую нагрузки на крыло, существенно увеличивают влияние бокового ветра на самолёт при взлёте и посадке, а также в зонах турбулентности.

В тоже время на начальном этапе проектирования в начале 2000-х винглеты на МС-21 предусматривались (фото макета самолёта в заголовке статьи), т.е., конструкция крыла не позволяла получить требуемую топливную эффективность. Но по мере развития проекта, появления новых материалов и технологий от них отказались — потому что МС-21 это современный и технологичный самолёт с высоким аэродинамическим качеством, не требующим какого-либо изменения геометрии законцовок его крыла.

По мнению заместителя гендиректора ЦАГИ, начальника комплекса аэродинамики и динамики полёта летательных аппаратов Сергея Ляпунова, винглеты - это резерв, который можно использовать на последующих модификациях. Но в настоящее время характеристики и топливная эффективность в крейсерском полёте, которые даёт суперкритическое композитное крыло, достаточны для обеспечения требуемого уровня конкурентоспособности.

Примечание:

  1. На фото в заголовке статьи показан концептуальный вид самолёта МС-21 в 2003-2005 годах. «Defense Technologies» 2005, №4, V.3, p.15 / (с) ОКБ им. А.С. Яковлева (http://www.yak.ru/ENG/FIRM/art_switch.php?art=6)
  2. Данные по удлинению крыла различных типов самолётов собраны из Википедии и открытых источников в интернете по запросам в Яндексе "aspect ratio [модель самолёта]"

Андрей Величко

Отвратительно!ПлохоНи о чёмХорошоОтлично! (44 оценок, среднее: 4,68 из 5)
Загрузка...