Как работает авиационная БРЛС

Сегодня авиация немыслима без радаров. Бортовая радиолокационная станция (БРЛС) является одним из самых важных элементов радиоэлектронного оборудования современного летательного аппарата. По мнению экспертов, в скором будущем БРЛС останутся основным средством обнаружения, сопровождения целей и наведения на них управляемого оружия.

Мы попытаемся ответить на самые распространенные вопросы о работе РЛС на борту и рассказать, как создавались первые радары и чем смогут поразить воображение перспективные радиолокационные станции.

Радиолокационная станция "Редут", слева - излучающая установка, справа - приёмная
Радиолокационная станция "Редут", слева - излучающая установка, справа - приёмная

Когда появились первые радары на борту?

К идее использования радиолокационных средств на самолётах пришли несколько лет спустя после того, как появились первые наземные РЛС. У нас в стране прототипом первой БРЛС стала наземная станция «Редут».

Одной из основных проблем стало размещение аппаратуры на самолёте – комплект станции с источниками питания и кабелями весил примерно 500 кг. На одноместном истребителе того времени установить такую аппаратуру было нереально, поэтому станцию было решено разместить на двухместном Пе-2.

Первая отечественная бортовая радиолокационная станция под названием «Гнейс-2» была принята на вооружение в 1942 году. В течение двух лет было выпущено более 230 станций «Гнейс-2». А в победном 1945 году «Фазотрон-НИИР», ныне входящий в КРЭТ, начал серийный выпуск самолётной радиолокационной станции «Гнейс-5с». Дальность обнаружения цели достигала 7 км.

Bristol Beaufighter Mk.VIf  1943. (U.S. Air Force photo)
Bristol Beaufighter Mk.VIf 1943. (U.S. Air Force photo)

За рубежом первая авиационная РЛС «AI Mark I» – британская – была передана на вооружение немного раньше, в 1939 году. Из-за большого веса её устанавливали на тяжёлые истребители-перехватчики Bristol Beaufighter. В 1940 году на вооружение поступила новая модель – «AI Mark IV». Она обеспечивала обнаружение целей на дальности до 5,5 км.

Из чего состоит бортовая РЛС?

Конструктивно БРЛС состоит из нескольких съёмных блоков, расположенных в носовой части самолёта: передатчика, антенной системы, приёмника, процессора обработки данных, программируемого процессора сигналов, пультов и органов управления и индикации.

Сегодня практически у всех бортовых РЛС антенная система представляет собой плоскую щелевую антенную решетку, антенну Кассегрена, пассивную или активную фазированную антенную решетку.

Современные БРЛС работают в диапазоне различных частот и позволяют обнаруживать воздушные цели с ЭПР (эффективная площадь рассеяния) в один квадратный метр на дальности в сотни километров, а также обеспечивают сопровождение на проходе десятки целей.

Кроме обнаружения целей, сегодня БРЛС обеспечивают радиокоррекцию, полётное задание и выдачу целеуказания на применение управляемого бортового оружия, осуществляют картографирование земной поверхности с разрешением до одного метра, а также решают вспомогательные задачи: следование рельефу местности, измерение собственной скорости, высоты, угла сноса и другие.

Как работает бортовой радиолокатор?

На современных истребителях используются импульсно-доплеровские РЛС. В самом названии описан принцип действия такой радиолокационной станции.

Радиолокационная станция работает не непрерывно, а периодическими толчками – импульсами. В сегодняшних локаторах посылка импульса длится всего лишь несколько миллионных долей секунды, а паузы между импульсами – несколько сотых или тысячных долей секунды.

Встретив на пути своего распространения какое-либо препятствие, радиоволны рассеиваются во все стороны и отражаются от него обратно к радиолокационной станции. При этом, передатчик радара автоматически выключается, и начинает работать радиоприёмник.

Одной из основных проблем импульсных РЛС является избавление от сигнала, отражающегося от неподвижных объектов. Например, для бортовых РЛС проблема в том, что отражение от земной поверхности затеняет все объекты, лежащие ниже самолёта. Эти помехи устраняют, используя эффект Доплера, согласно которому частота волны, отраженной от приближающегося объекта, увеличивается, а от уходящего объекта – уменьшается.

Что означают Х, К, Ка и Кu диапазоны в характеристиках РЛС?

Сегодня диапазон длин волн, в котором работают бортовые радиолокационные станции чрезвычайно широк. В характеристиках РЛС диапазон станции указывается латинскими буквами, к примеру, Х, К, Ка или Кu.

РЛС "Ирбис" с ФАР
РЛС "Ирбис" с ПФАР

Например, РЛС «Ирбис» с пассивной фазированной антенной решёткой, установленная на истребителе Су-35, работает в X-диапазоне. При этом дальность обнаружения воздушных целей «Ирбиса» достигает 400 км.

X-диапазон широко используется в радиолокации. Он простирается от 8 до 12 ГГц электромагнитного спектра, то есть, это длины волн от 3,75 до 2,5 см. Почему он назван именно так? Есть версия, что во время Второй Мировой войны диапазон был засекречен и поэтому получил название X-диапазона.

Все названия диапазонов с латинской буквой К в названии имеют менее загадочное происхождение – от немецкого слова kurz («короткий»). Этот диапазон соответствует длинам волн от 1,67 до 1,13 см. В сочетании с английскими словами above и under, свои названия получили диапазоны Ka и Ku, соответственно находящиеся «над» и «под» K-диапазоном.

Радары Ka-диапазона способны работать на коротких расстояниях и производить измерения сверхвысокого разрешения. Такие радиолокаторы часто применяются для управления воздушным движением в аэропортах, где с помощью очень коротких импульсов – длиной в несколько наносекунд – определяется дистанция до самолёта.

РЛС вертолёта Ка-52 "Арбалет"
РЛС "Арбалет" вертолёта Ка-52

Часто Ка-диапазон используется в вертолётных радарах. Как известно, для размещения на вертолёте антенна БРЛС должна иметь небольшие размеры. Учитывая этот факт, а также необходимость приемлемой разрешающей способности, применяется миллиметровый диапазон длин волн. К примеру, на боевом вертолёте Ка-52 «Аллигатор» установлен радиолокационный комплекс «Арбалет», работающий в восьмимиллиметровом Ка-диапазоне. Этот радиолокатор разработки КРЭТ обеспечивает «Аллигатору» огромные возможности.

Таким образом, каждый диапазон имеет свои преимущества и в зависимости от условий размещения и задач, БРЛС работает в различных диапазонах частот. Например, получение высокой разрешающей способности в переднем секторе обзора реализует Ка-диапазон, а увеличение дальности действия БРЛС делает возможным Х-диапазон.

Что такое ФАР?

Очевидно, для того чтобы принимать и излучать сигналы, любому радару нужна антенна. Чтобы уместить её в самолёт, придумали специальные плоские антенные системы, а приёмник и передатчик находятся за антенной. Чтобы увидеть разные цели радаром, антенну нужно двигать. Так как антенна радара достаточно массивная, двигается она медленно. При этом, становится проблематична одновременная атака нескольких целей, ведь радар с обычной антенной держит в «поле зрения» только одну цель.

РЛС "Заслон"  перехватчика МиГ-31
РЛС "Заслон" перехватчика МиГ-31

Современная электроника позволила отказаться от такого механического сканирования в БРЛС. Устроено это следующим образом: плоская (прямоугольная или круглая) антенна разделена на ячейки. В каждой такой ячейке находится специальный прибор – фазовращатель, который может на заданный угол изменять фазу электромагнитной волны, которая попадает в ячейку. Обработанные сигналы из ячеек поступают на приёмник. Именно так можно описать работу фазированной антенной решётки (ФАР).

А если точнее, подобная антенная решётка со множеством элементов-фазовращателей, но с одним приёмником и одним передатчиком называется пассивной ФАР. Кстати, первый в мире истребитель, оснащенный радиолокатором с пассивной ФАР, – наш российский МиГ-31. На нём была установлена РЛС «Заслон» разработки НИИ приборостроения им. Тихомирова.

Для чего нужна АФАР?

Активная фазированная антенная решётка (АФАР) является следующим этапом в развитии пассивной. В такой антенне каждая ячейка решётки содержит свой приемопередатчик. Их количество может превысить одну тысячу. То есть, если традиционный локатор – это отдельные антенна, приёмник, передатчик, то в АФАР приёмник с передатчиком и антенна «рассыпаются» на модули, каждый из которых содержит щель антенны, фазовращатель, передатчик и приёмник.

Раньше, если, например, вышел из строя передатчик, самолёт становился «слепым». Если в АФАР будут поражены одна-две ячейки, даже десяток, остальные продолжают работать. В этом и есть ключевое преимущество АФАР. Благодаря тысячам приёмникам и передатчикам повышается надёжность и чувствительность антенны, а также появляется возможность работать на нескольких частотах сразу.

Но главное, что структура АФАР позволяет РЛС параллельно решать несколько задач. Например, не только обслуживать десятки целей, но и параллельно с обзором пространства очень эффективно защищаться от помех, ставить помехи радарам противника и картографировать поверхность, получая карты высокого разрешения.

Кстати, первую в России бортовую радиолокационную станцию с АФАР создали на предприятии КРЭТ, в корпорации «Фазотрон-НИИР».

Какая РЛС будет на истребителе пятого поколения ПАК ФА?

Ш-121
Радиолокационный комплекс Ш-121 истребителя Т-50

Среди перспективных разработок КРЭТ – конформные АФАР, которые смогут вписываться в фюзеляж летательного аппарата, а также так называемая «умная» обшивка планера. В истребителях следующего поколения, в том числе и ПАК ФА, она станет как бы единым приёмо-передающим локатором, предоставляющим пилоту полную информацию о происходящем вокруг самолёта.

Радиолокационная система ПАК ФА состоит из перспективной АФАР X-диапазона в носовом отсеке, двух радаров бокового обзора, а также АФАР L-диапазона вдоль закрылков.

Сегодня КРЭТ также работает над созданием радиофотонного радара для ПАК ФА. Концерн намерен создать натурный образец радиолокационной станции будущего до 2018 года.

Фотонные технологии позволят расширить возможности радара – снизить массу более чем вдвое, а разрешающую способность увеличить в десятки раз. Такие БРЛС с радиооптическими фазированными антенными решётками способны делать своеобразный «рентгеновский снимок» самолётов, находящихся на удалении более 500 километров, и давать их детализированное, объёмное изображение. Эта технология позволяет заглянуть внутрь объекта, узнать, какую технику он несёт, сколько людей в нём находится, и даже разглядеть их лица.

Источник: КРЭТ

Отвратительно!Плохо!Принято!Хорошо!Отлично! (3 оценок, среднее: 3,67 из 5)
Загрузка...